1) A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the environment can support no more than 4000 elk. The growth rate of the elk population p is:

$$
\frac{d p}{d t}=k p\left(1-\frac{p}{4000}\right), \quad 40 \leq p \leq 4000
$$

where t is the number of years.
a) Write a model for the elk population in terms of t.

$$
p=\frac{4000}{1+99 e^{-0.194 t}}
$$

b) A direction field for this equation is shown below. Graph the solution that passes through the point $(0,40)$.

c) Use the model to estimate the elk population after 15 years.
d) Find the limit of the model as $t \rightarrow \infty$.

≈ 626
4000

2) The pacific halibut fishery has been modeled by the differential equation:

$$
\frac{d y}{d t}=k y\left(1-\frac{y}{K}\right)
$$

where $y(t)$ is the biomass (the total mass of the members of the population) in kilograms at time t (measured in years), the carrying capacity is estimated to be $K=8 \times 10^{7} \mathrm{~kg}$, and $k=0.71$ per year.
a) If $y(0)=2 \times 10^{7} \mathrm{~kg}$, find the biomass a year later.
b) How long will it take for the biomass to reach $4 \times 10^{7} \mathrm{~kg}$?

$\approx 3.23 \times 10^{7} \mathrm{~kg}$
≈ 1.55 years

